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Exact bound-state wavefunctions for potentials varying from 
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Abstract. We reduce the Schrodinger equation on the full line, the potential of which varies 
from the double well to the single well depending on the value of some parameter a, to a 
Heun’s type equation, the solution of which recalls the hypergeometric series. The eigen- 
value equation, which determines the energy of bound states, follows from the usual 
requirement that the wavefunction be zero at infinity. Transforming this equation into the 
infinite continued-fraction expansion we easily obtain the approximate eigenvalue. We 
compare it with that evaluated exactly and see that the difference is less than 0.5% for any 
value of the parameter a. 

1. Introduction 

The theoretical treatments of tunnelling phenomena are usually based on some kind 
of approximation. Assuming that the probability of tunnelling is small, we express 
the particle state as the even or odd combination of wavefunctions which describes 
the quantum motion in only one of the potential wells separated by the central barrier. 
In this way, for example, the energy splitting of the lowest even and odd bound states 
is calculated. In the WKB approach it is proportional to the amplitude of the tunnelling 
probability corresponding to the barrier (Landau-Lifshitz 1958). This is also why the 
probability of localising a particle in one well oscillates with the frequency, which is 
proportional to this energy difference. Some recent references on this coherence 
problem at non-zero temperatures and in real systems with dissipation of the energy 
of motion are den Boer and de Bruyn Onboter (1980), Caldeira and Leggett (198 l ) ,  
Widom and Clarke (1982), Voss and Webb (1982) and Bray and Moore (1982). 

From this point of view the double-well potentials, for which the Schrodinger 
equation on the full line can be exactly solved, represent an interesting problem as 
they allow comparison with the approximative formula. The investigated potential 
used here 

V (  a, y )  = [4a/ ( a - t2)’][(3a -;) t 4  + ( a 2  - 5a + 3)t2 - ;a2 + U ]  

t = tanh[(2a)”’y], (1) 

is more interesting as it corresponds to a real physical problem and its double-well 
form passes to the one-well form by varying only the value of parameter a from 
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a = 1 + E ( E  > 0) to a = cc. It can also be easily generalised to the four-well potential 
and the Schrodinger equation retains the analytic solvability. 

In 8 2 properties of the potential (1 )  are investigated, especially in the double-well 
region. We solve the Schrodinger equation on the full line for this potential in 8 3 .  
As we are concentrating on the bound-state solutions, we initially review the properties 
of the ground-state solution and then we give the solution for the only excited state. 
The general approach consists in reducing the primary Schrodinger equation to Heun’s 
equation in the interval [0, 11. Its solution, expressed in terms of power series, becomes 
less divergent at  z = 1, when we impose the usual boundary condition, which determines 
the eigenvalues. The eigenvalue equation is also written in the form of the infinite 
continued-fraction expansion. There is an  alternative solution, which leads to Heun’s 
equation again but with different defining parametres. At the end of the section we 
sketch the scattering solutions. 

We derive two approximate analytic formulae for the binding energy of the only 
excited state as a function of parameter a from the infinite continued-fraction expansion 
and compare them with the exact numerical values in 8 4. Both derived formulae can 
be related to variational solutions of the problem, which apply simple forms of 
wavefunction. The concluding remarks form the content of 0 5. 

2. The Schrodinger equation 

The Schrodinger equation, with which we are concerned in this paper, was first derived 
by one of the authors ( H u d i k  1981) in connection with the stability analysis of some 
solutions for the double sine-Gordon equation with respect to small perturbations. 
This equation reads 

where the potential V(a, y )  is given by ( 1 ) .  Compared with the quoted paper we use 
a new parameter a = 1 +A/2  instead of A E (0, a) and put yo= 0, thus fixing the 
symmetry centre of the potential V(a, y )  at the origin. 

If a > 5 the potential V( a, y )  assumes the maximum value V = 2a  at  y = fa and  
the minimum value V = 2(2 - a )  at y = 0. This minimum turns into the local maximum 
for a < 5  and  new minima V =  -2- [ (a -  1)’/4] appear at ym = 
r t ( 2 ~ ) - ” ~  tanh-’{[a(5- a ) / ( 7 a  -3)]’”} at  the same time. The potential V(a, y )  is 
characterised by two wells below the critical value a, = 5 and by a single well above 
this value as demonstrated in figure 1. Continuously varying the value of a we 
completely change the form of the potential. 

We can also characterise the potential V(a ,y)  by the distance 1 =21y,/ between 
the centres of two wells in the double-well region. We have I== 
( 10)”2(5 - a ) / 3 2 + 0 [ ( 5  - a)’] as a + 5- and I == -2-”2 ln[f(a - 1 ) ] +  O[ (a  - 1 )  ln(a - l ) ]  
as a + 1 + .  The energy excess of the barrier is SEB == ( a  - 5)’/4== 25,61’ as 1 + O+ and 
SEB=4-4exp(-2’/’1) as l+a. Thedifference S E M = 4 + 2 ( u -  l ) + ( a -  1)2/4between 
the absolute maximum and minimum of the potential energy displays similar behaviour: 
6 E ~ ~ 4 + 4 e X p ( - 2 ’ / ’ 1 )  as 1+a, but 6EM= 16-64(2/5)”*1 as l + O + .  

Introducing the new energy parameter b and the new variable x 

b 2 =  1 - w2/2a, I = (2a)l/2y, (3) 
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Figure 1. The potential V ( a ,  x )  is characterised by 
two wells below the critical value a, = 5 and by a 
single well above this value: curve a, a = 1.25; curve 
b, a = 3 , 2 5 ;  curve c, a = 6,25. 

Figure 2. The density w I ( x )  of the probability of 
observing a quantum particle at the point x for three 
typical values of the potential parameter a :  curve a, 
a = 1,25; curve b ;  a = 3,25; curve c, a = 6 ,25 .  Note 
that for 2 < a < 5 there are two minima of the poten- 
tial V ( a ,  x )  but only a single minimum in the proba- 
bility w , ( x ) .  

we obtain the more familiar form of the Schrodinger equation 

(a  - l)[a +3(tanh x)'] 
[a - (tanh x)'] 

d2 

in which the potential tends to zero as /x/+co. Since the potential in (4) is always 
attractive, there is at least one bound state for any a E ( 1 ,  CO) (cf Landau and  Lifshitz 
1958, for example). 

3. Bound states 

The zero oscillation mode w = 0 found by Hud6k (1981) is the ground state of (4),  for 
which we obtain b = 1. The corresponding normalised eigenfunction is 

where 

tanh A = 114;. (6) 

Figure 2 shows the density wI(x) = IF( 1, x)l' of the probability of observing a quantum 
particle at the point x for three typical values of the potential parameter a ( a  = 1 ,  2 5 ,  
a = 3,25,  a = 6 , 2 5 ) .  Its value at the symmetry centre x = 0 
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can be expressed in terms of the distance 1 in the double-well region ( 1  < a < 5). This 
probability vanishes exponentially, w I  0) = 2 exp( -2’”l), as 1 + 00 and assumes the 

There is a well known procedure (Kamke 1943) by means of which we reduce the 
number of bound states. This procedure consists in introducing a new eigenfunction 

finite value w , ( O )  = 4/[5 +4J5  In($( 1 + J- 5)] as 1 + O+. 

U ( b ,  x )  = F ( 1 ,  x)(dldx)[F(b,  x ) / F ( l ,  XI], (8) 

instead of F(b,  x),  which now solves the Schrodinger equation (4) with the transformed 
potential 

( a  - l)[a +3(tanh x)’] 
[ a  - (tanh x)’] 

[ 1 - (tanh x)’] 

- _ -  ( 1 -  
(cosh x)’ U - 

(9) 

and with the same eigenenergy -b’. As (9) represents an attractive potential, but less 
attractive than -2/(cosh x)’, there then exists just one bound state of the transformed 
equation (4). This means finally that there are two bound states b = 1 and O <  b < 1 
in the primary equation (4) for 1 < a <CO. 

We find them by inserting 

t = t a n h ( x )  and F ( b , x ) = [ ( l  - ? 2 ) b ’ 2 / ( a - ? 2 ) ~ ( b ,  t 2 )  (10) 

into (4). The eigenfunctionf(b, z ) ,  (z  = t ’ )  then solves Heun’s equation (Kamke 1943, 
formula 2.328): 

+ ( ( a  + p  + 1)z2-[a + p  + 1 + a ( y +  6) - 6]z+ ya)h’+ ( a p z  - q ) h  = 0 
( 1 1 )  

where 

i.e. the parameters q, a,  p and 6 depend on the eigenvalue b. 
Solutions of ( 1  1) can be expanded into the series 

f cn,r(a,  4 ;  a,  P ,  Y, 8 ) Z n + r  
n = O  

in the interval O s  z s 1 in which we are interested. The coefficients c ~ , ~  fulfil the 
recurrence relations 

a( n + r + y )  ( n + r + 1 ) ) cn’r 

n + r +  y + 6  - l ) ( n + r ) + q / u  
( n  + r +  -y)(n + r +  1) 

- 

( n +  r ) ( n + r + c Y + p  - 6 )  + C n + l , r  = (( 

( n  + r +  a - l ) ( n +  r + p  - 1) 
a(  n + r + y ) ( n  + r + 1 

( n  = -l ,O,.  . . ,CO), C n - l , k  

C-Z,, = c - l , r  = 0, CO,r  = 1. (14) 

Putting n = -1 we see that r = 0 or r = 1 - y. The value r = 0 labels an even function 
of t and we denote the corresponding series (12) by F(a ,  q p ,  P, y, 6 ;  z)  in accordance 
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with Kamke (1943). If y is nat an integer, which is the case when y =& r = 1 - y = f 
labels the second independent solution of (10). It is an odd function of t and reads 
Z’ -~F(  a, q1 ; a - y + 1, p - y + 1,2 - y, S ; z )  in the notation introduced, where q ,  = 
q + ( 1  - y ) [ a  + P + 1 - y +  (a - 1)6]. The function F ( a ,  q ;  a, p, y, S ;  z) exhibits similar 
properties to the more familiar hypergeometric function F ( p ,  v ;  p ;  z). It diverges at 
z = 1, in general, like the geometric series, as the solution of the recurrence relations 
(14) is 

~ , ~ , ( ~ , q ; ( ~ , p , y , S ) - A r ( a , q ; ~ , p , y , S ) + B r ( a , q ; ~ , p , ~ , ~ ) a - ”  (15) 

in the asymptotic region n >> 1. This means according to (10) and (12), that the 
eigenvalue equation, which determines the eigenvalue b, reads 

Although even then the logarithmically divergent part ( b  - 1) (  1 - l / a ) z  In( 1 - z) 
remains in the series (13), according to (14), it is harmless in the bound-state wavefunc- 
tion (10) as the total product function tends to zero as It1 + 1. 

Since the eigenvalue equation (16) is somewhat impractical, we replace it by another 
one, which is more amenable to an approximate solution. Denoting factors multiplying 
c ~ , ~  and - c , , - ~ , ~  respectively in (14) by pntr  and U,+, respectively, we transform (14) 
into the reverse recurrence relation 

C n + l , r  V n + r + l  
P n , r  = - ( n = O ,  ...,a), 

Cnsr  P n + r + I  - P n + l , r  

which turns into the infinite continued-fraction expansion 

V I + ,  V2+r  V 3 + r  

PI+, - p 2 + r  -p3+, 
. . .  pa,, = p, = - - - - 

by successive iterations into the new eigenvalue equation. 
If we insert b = 1 into the set of parameters (12), their values are a = a, q = 0, a = 0, 

p = - f ,  y = f ,  S = 2, so that pa = v 1  = 0 (for r = 0), which corroborates HudBk’s eigen- 
value b2 = 1 and eigenfunction (1 - t 2 ) I” / (a  - t 2 ) .  The eigenvalue of the only excited 
state 0 < b < 1 is determined by the r = f alternative of equation (1 8) and the correspond- 
ing eigenfunction is an odd function of x with nodes at x = 0 and x = *cc respectively. 

This excited state is a ground state for the transformed potential (9). The product 
form of the corresponding transformed eigenfunction U (  b, x), 

U ( b , x ) = ( l  - t 2 ) b ’ 2 ~ ( b ,  t 2 ) ,  t = tanh(x), (19) 

which is analogous to ( lo) ,  ensures the desirable asymptotic behaviour of the bound- 
state wavefunction. Inserting this expression into the Schrodinger equation with 
potential (9) we get Heun’s equation (1 1 )  for U (  b, z )  again, but now the set of parameters 
(12) is 

U = U ,  q = a a ( b + l ) b - i ,  a = f ( b - l ) ,  P = i ( b + 2 ) ,  y e t ,  6 = b + l .  (20) 

The ground-state wavefunction U (  b, x)  is given by the r = 0 alternative of formulae 
(13)-( 18), so that we have two formally different expressions for the wavefunction of 
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the excited state of (4) 

F (  b, x )  = - - b +  1; i 2 )  

t = tanh(x) 
1 b + 2  b -1  1 

l)--'- - - 
2' 2 ' 2 ' 2 '  

(21) 
both expressed by Heun's solution F ( .  . . ; . . . ; t 2 ) .  

Not only solutions for bound states but also solutions for the scattering states can 
be expressed by means of functions F ( .  . . ; . . . ; 2 ) .  The parameters q, a, p and 6 are 
now complex numbers as b = -ik and k 2 >  0 is the energy of the scattered particle. 
As the potential in (4) is symmetric we now find solutions of the Schrodinger equation 
for either half-line x 2 0 and  x S 0 separately and  then match them at x = 0. Because 
the scattering wavefunctions are neither even nor odd functions of x, they are linear 
combinations of two independent solutions that are given by the r = O  and r = i  
alternative of formulae (10) and (13)-( 15). This combination must be taken such that 
the wavefunction (10) remains finite as x + *a and that it respects the prescribed 
boundary conditions of the particular scattering problem as x + *ta3 at the same time. 
Realisation of the sketched procedures also leads automatically to the determination 
of the other physically important quantities like the transmission and  reflection ampli- 
tudes. 

4. Approximate solutions 

We begin with the eigenvalue problem for the excited state b. If we choose values 
(12) for the parameters of Heun's equation, its eigenvalue b is determined by equation 
(18), in which we put r = i. As pn,1 /2  - a- ' ,  according to (15) for the eigenvalue b in 
the asymptotic region of n, we cut off the infinite expansion at some large enough 
value of n and substitute v,/(,u,, - a - ' )  for pn-1,1/2.  We get an  approximate equation 
polynomial expression in b, the positive root of which, b < 1, is an  approximate value 
of b. 

This procedure is much simplified provided that ~ 3 1 2  is very small for some reason. 
If we neglect it completely, the approximate eigenvalue equation reads pI12 = 
( b 2 + 3 b - 4 / a ) / 6  according to (14) and  (12), i.e. the eigenvalue 

b =4(9+ 1 6 / ~ ) ' / ~ - $ = 8 / a [ ( 9 +  16/a)'/ '+3]. ( 2 2 )  
It is roughly equal, i.e. b = a- ' ,  especially as a + 1'. But then the absolute value of 
vjI2 = (b  - l )b /20a  is very small indeed I v ~ / ~ I  = ( a  - l ) /20a3  6 I /  135. When we insert 
b = l / a  into the infinite continued-fraction, which divides ~ 3 / 2  according to (18), we 
see that its value moves round the value $. Thus the eigenvalue equation is 

i.e. 
b 2 + 3 b - ( 4 / a ) + ~ c [ ( a - l ) / a 3 ] = 0  

b=f [9+(16 /a ) -$c [ (a  - l ) / ~ ~ ] } ' / ~ - - $ ,  (23) 
where the unknown constant c 1 according to the theoretical estimate obtained. 
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We have calculated numerically the binding energies b2 using the computer program, 
which issues from the very effective method of determining the eigenvalues of the 
one-dimensional Schrodinger equation (cf Ulehla et al 1981). The numerical results 
are given in the second column of table 1. As the relative deviation of these values 
and those according to formula (22) assumes its maximum value 7.04% at a = 2.1 (see 
the third column of table l ) ,  we have chosen constant c in (23) such that the numerical 
value and the value given by (23) to be equal at this point. We obtain c = 1.025 and 
the values of the corresponding binding energy as a function of parameter a differ 
from those calculated numerically by less than 0.5%. 

Table 1. The binding energy b2 as a function of parameter a. Listed are exact values E 
and the approximate values according to formulae (22) and (24). 

a E (22) (24) 

1 . 1  
1.2 
I .3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
3.1 
4.1 
5.1 
6.1 
7.1 
8.1 

11.1 
21.1 
31.1 

0.8362 
0.7156 
0.62 17 
0.5465 
0.4849 
0.4336 
0.3905 
0.3537 
0.322 1 
0.2947 
0.2707 
0. I366 
0.0828 
0.0557 
0.0400 
0.0302 
0.0236 
0.0130 
0.0038 
0.001 8 

0.8578 
0.7446 
0.6529 
0.5775 
0.5146 
0.4617 
0.4166 
0.3779 
0.3445 
0.3 153 
0.2898 
0. I456 
0.0876 
0.0585 
0.0419 
0.0314 
0.0245 
0.0134 
0.0038 
0.00 18 

0.8801 
0.7822 
0.701 1 
0.6330 
0.5750 
0.5253 
0.4821 
0.4444 
0.41 13 
0.3820 
0.3559 
0. I990 
0.1289 
0.0908 
0.0677 
0.0525 
0.0420 
0.0243 
0.0076 
0.0037 

As there is an alternative solution for the excited state given by (19), ( 1 1 )  and 
(20-21), we applied the described procedure to the set of parameters (20) also. Unlike 
the preceding case we cannot now estimate the RHS of (18) (with r = 0 )  to a good 
accuracy. If we neglect it completely, we get po = 0 = b( b + 1)/2 - l / a ,  i.e. 

b =$( 1 + 8 , ’ ~ ) ’ ’ ~  -$. 

This root assumes the exact value for a + 1 as well as for a +CO, but within the interval 
a E (1,  CD) the agreement with the numerical value is much worse than that of formula 
(22) (see the fourth column of table 1). The only way of recovering formula (24) is 
to replace 8 / a  by 8[ 1 - ( a  - 1)/3a]/ a as it has asymptotic behaviour for a + CO, differing 
only slightly from that given by the numerical evaluation and it is identical with formula 
(22) to an order I/a. The resulting formula: 

b = f [ l +  16/3a+8/3a2]”*-$ 
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gives the numerical values, which agree with the second column to a minimum accuracy 
of 1’10. This is why we prefer formula (23). 

At the same time, formulae (22) and (24) reflect two possibilities of finding the 
approximate wavefunction using the variational calculation. We evaluate the average 
value of the total energy for the potential of equations (4) and (9) respectively for this 
purpose. In the first case we substitute the function 

F(p,  x) = [l - (tanh X ) * ] ~ ’ ~ [ U  - (tanh x)’]-’ (26) 

for the wavefunction (lo), while in the second case we insert 

U( p, x) = [ 1 - (tanh x ) * ] ~ ”  

i.e. 

instead of (19). The average values E, and E, are, correspondingly, 

1 2 1 1  
- p - - + - - - -  2 a 4 p - ;  

3 4 3  3 
2 U 4 8(p-;) 

E =-p--+-+- 

The integrals appearing in the average values just define the different types of hyper- 
geometric function F ( w ,  v ;  p ;  z )  that we have successively reduced to those written in 
(28) and (29) using the relations of Rateman and Erd6lyi (1953). The minima of 
expressions (28) and (29) are, in fact, given by formulae (22) and (24) respectively in 
the limits a + 1+ and a + 00. 

5. Concluding remarks 

The fact that the Schrodinger equation on the full line with the double-well potential 
( 1 )  or even the more general potential is analytically solvable, can be attributed to the 
final Heun form of the transformed equation, the solution of which does not differ 
very much from the hypergeometric series. The alternative solution (19), which again 
results in the equation of Heun’s type and which is based on the transformation (9) 
is useful only when the form of the ground-state wavefunction is simple. The 
phenomenological formula ( 2 5 ) ,  though practically useful, is in fact misleading as it 
is derived from formula (23), which only has a theoretical justification. 

Note. After completion of this article, a paper by W M Zheng on ‘The Darboux 
transformation and solvable double-well potential models for Schrodinger equations’ 
appeared (Zheng 1984). In the paper Zheng derives a potential from the Weber 
equation, which varies its form from the double well to the single well depending on 
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the value of a parameter, using the Darboux transformation. The Darboux transforma- 
tion and allied transformations are often used now in studying various aspects of 
solutions of the Schrodinger equation. The first paper of this kind was probably the 
paper by Grum (1955) on ‘Associated Sturm-Liouville Systems’. We express our 
sincere thanks to the referee, who attracted our attention to a certain similarity between 
some investigations in our paper and in that of Zheng. 
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